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Waves in turbulent stably stratified shear flow

By F.G. Jacobitz t, M. M. Rogers :_ AND J. H. Ferziger ¶

Two approaches for the identification of internal gravity waves in sheared and un-

sheared homogeneous stratified turbulence are investigated. First, the phase angle be-
tween the vertical velocity and density fluctuations is considered. It was found, however,

that a continuous distribution of the phase angle is present in weakly and strongly strat-

ified flow. Second, a projection onto the solution of the linearized inviscid equations of

motion of unsheared stratified flow is investigated. It was found that a solution of the fully

nonlinear viscous Navier-Stokes equations can be represented by the linearized inviscid

solution. The projection yields a decomposition into vertical wave modes and horizontal

vortical modes.

1. Introduction

An important problem in geophysical fluid mechanics is the characterization of turbu-
lence and wave motion in stably stratified flows. Fluid motion can occur as a result of

either of these phenomena and being able to separate the motions associated with each

should lead to better understanding and predictability of the flow. Stewart (1969) listed

criteria that might be used to distinguish between internal wave motion and turbulence.
The first distinction noted was that wave motion satisfies linear equations, whereas turbu-

lence is inherently nonlinear. However, when both waves and turbulence are present, the

motions are coupled nonlinearly and it is unclear how to extract the wave component of

the flow. Secondly, the process by which energy is transported is different. In turbulence,

energy is advected at the speed of the motion, whereas waves transport energy through

pressure-velocity correlations, usually at a group velocity that is faster than the particle

velocity. However, pressure-velocity correlations also exist in turbulence when waves are
not important. Lastly, Stewart noted the difference between turbulence and waves with

regard to mixing. Except when they break, waves do not produce mixing. Although they

can transport momentum, they cannot transport scalars. Thus the scalar flux u-_, where
u2 is the vertical velocity component, should be large in regions dominated by turbulence

and small where waves predominate. Furthermore, the relative phase of vertical velocity

fluctuations u2 and density fluctuations p is different for waves and turbulence. For sta-

bly stratified flows, in-phase motion between us and p corresponds to down-the-gradient

turbulent transport, while 180 ° out-of-phase motion is associated with counter-gradient

turbulent transport. For wave motions, u2 and p have a phase difference of 90 ° and there
is no mean correlation between them.

Stewart (1969) concluded that this last distinction held the greatest promise for sep-

arating waves and turbulence and this criterion has been used extensively since. For ex-
ample, Stillinger, Helland, _ Van Atta (1983) felt that their unsheared stably stratified

decaying turbulence "had been completely converted to random internal wave motions"

when h-_ became zero. However, Lienhard _ Van Atta (1990) pointed out that u2p can
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be zero as a result of co-gradient and counter-gradient fluxes at different scales of motion

cancelling each other out. More careful diagnosis requires examination of the cospectrum

of u_p as a function of wavenumber, as originally proposed by Stewart(1969). Defining

the cospectrum Co and quadrature spectrum Qu as

-" X ,Co_2p(kl,z2) = Re (_3u2(kl, 2 k3)_(kl,x2, k3)) (1.1)

Qu_,2p(kl, x2) = Im (E}3_(kl, x:, k3)fi(kt, x2, k3)) , (1.2)

where the tildes indicate Fourier transformed quantities, the phase angle ¢_2p between

vertical velocity u2 and density p is given by

¢u2p = atan \ C---_2; / "

The above spectral quantities (or similar measures in terms of other wavenumber com-

ponents) have been used in evaluating both experimental and computational data on

stratified flows. McBean & Miyake (1972) used measurements in the atmospheric surface

layer to tentatively conclude that wave motions may be important at low frequencies in

stably stratified flow. Komori, Ueda, Ogino & Mizushina (1983) felt that a significant

fraction of the motion in their stably stratified open-channel flow experiment was wave-

like based on the phase angles measured. In contrast, data from experiments in both

unsheared (Lienhard & Van Atta 1990) and sheared (Piccirillo & Van Atta 1997) stably

stratified homogeneous turbulence indicate no evidence of wavelike motion based on ex-
amination of the phase angle. Analysis of direct numerical simulations of similar sheared

homogeneous stratified turbulence (Holt, Koseff & Ferziger 1992) also indicates that even

for strong stratification there is no band of wavenumbers with ¢_p _ 90 °.
Riley, Metcalfe, and Weissman (1981) proposed a different method for separating wave-

like and turbulent motions. They used the Craya (1958) decomposition to split the tur-

bulent velocity field associated with each wavenumber into two solenoidal components,
one normal to the wavenumber vector and the gravity vector, and the other orthogonal

to this component and the wavenumber vector. For small amplitudes, this second com-

ponent satisfies the linear propagation equation for internal gravity waves and is thus
identified as the "wave" component of the motion. The other component consists of quasi-

horizontal motions containing all the vertical vorticity and is identified as "turbulence".

This decomposition only splits the flow into propagating and non-propagating parts in
the limit of zero Froude number. For small but finite Froude number Staquet and Riley

(1989) proposed a generalization of this decomposition using Ertel's (1942) Theorem for
potential vorticity. However, this generalization is invalid when the density gradient is
zero or unbounded and therefore cannot be used for turbulent flows.

Despite this shortcoming, Herring and M@tais (1989) and M@tais and Herring (1989)

used the original Riley et al. decomposition to split their numerically simulated turbulent
flow fields into "wave" and "turbulent" components. They acknowledge the deficiencies

of this approximation, noting 1) that "a proper definition of waves should include the

density field, and its phase relative to the 'wave'-component of the velocity" and 2)
their non-zero Froude number. However, the "turbulent" components of their flows do
not show oscillations that scale with the Brunt-V_iis_i]_i frequency; such oscillations are

observed in the wave component of the flows. This suggests a weak interaction between

the components and perhaps adequacy of the decomposition.
The prototypical example of homogeneous turbulent stratified shear flow with uniform

stable vertical stratification Sp = _p/ax2 and uniform vertical shear S = _U/_x2 is the
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simplest flow that contains both shear and stratification. It has been studied extensively
in the past due to its geophysical significance. Experimental investigations include Rohr,

Itsweire, Helland & Van Atta (1988) and Piccirillo & Van Atta (1997). Numerical simula-

tions include the work by Gerz, Schumann & Elghobashi (1989), Holt, Koseff & Ferziger

(1992), Jacobitz, Sarkar & Van Atta (1997), and Jacobitz (2000). ltlrbulence in decaying
stratified turbulence without shear has been investigated by M6tals & Herring (1989),

Lienhard & Van Atta (1990), Yoon & Warhaft (1990), and Briggs, Ferziger, Koseff &

Monismith (1998).
In this study, possible ways to decompose the fluid motion into turbulence and wave

components are investigated in direct numerical simulations of both sheared and un-
sheared homogeneous stratified turbulence. Both the phase angle between the vertical

velocity and density and projections onto eigensolutions of the linearized governing equa-
tions are examined.

In the following section, the numerical simulations used in the present study are in-
troduced. In sections 3 and 4, the phase angle results in sheared and unsheared stably

stratified turbulence are presented. In section 5, a turbulence-wave decomposition based

on the linear inviscid equations of motion is applied to the numerical data. Results are
summarized in section 6.

2. The numerical simulations

The current study is based on the results of five direct numerical simulations of sheared

homogeneous stably stratified turbulence and two direct numerical simulations of un-

sheared decaying homogeneous stably stratified turbulence.
In the direct numerical simulations, all dynamically important scales of the veloc-

ity, density and pressure fields are resolved and no turbulence models are introduced. A

spatial discretization is first performed to obtain a semi-discrete system of ordinary differ-

ential equations from the original system of partial differential equations. An integration

of the system of ordinary differential equations is then performed to advance the solu-
tion in time. The spatial discretization is accomplished by a spectral collocation method.

The temporal advancement is accomplished by a fourth-order Runge-Kutta scheme. A

computational grid overlaying a cube of length 27r was used with 2563 points. The initial
conditions are taken from a separate simulation of isotropic turbulence without density

fluctuations, which was allowed to develop for approximately one eddy turnover time.

The energy spectrum of the initial field peaks at a wave number k = 13 and the resulting
vertical integral scale, computed as the vertical integral of the autocorrelation of the

vertical velocity component, is L = 0.174, compared to the box size 2_r. The initial value

of the Taylor micro-scale Reynolds number Rex = 45 is fixed in all simulations.

Figure 1 shows the evolution of the normalized turbulent kinetic energy K/Ko for

sheared stably stratified turbulence with Richardson numbers Ri = O, Ri = 0.1, Ri = 0.2,
Ri = 0.5, and Ri = 1.0. Here the Richardson number is given by N2/S 2, where N is the

Brunt-Vhisiilii frequency, given by x/(-g/P0)O-fi/0Y" Initially, the turbulent kinetic energy
decays as a result of the absence of Reynolds shear stress UlU2 in the isotropic initial
condition. For simulations with small values of the Richardson number, the turbulent

kinetic energy eventually grows with nondimensional time St. For simulations with large
values of the Richardson number, however, the turbulent kinetic energy continues to

decay, with the stratification overwhelming the turbulence production by the mean shear.

Figure 2 shows the evolution of the normalized turbulent kinetic energy K/No for
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FIGURE 1. Evolution of the normalized turbulent kinetic energy K/Ko in sheared stratified
turbulence with Richardson numbers 0 (o), 0.1 (a), 0.2 (o), 0.5 (A), and 1.0 (_7).
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FIGURE 2. Evolution of the normalized turbulent kinetic energy K/Ko in unsheared stratified
turbulence with initial Froude numbers 64 (o) and 6.4 (o).
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FIGURE 3. Spectrum of the phase angle ¢==o in sheared stratified turbulence at St = 5 with
Richardson numbers 0 (o), 0.1 (o), 0.2 (o), 0.5 (A), and 1.0 (V).

unsheared stably stratified turbulence with initial Froude numbers Fr : 64 and Fr : 6.4,

where Fr = _/-_2/(LN). A slightly stronger decay of the turbulent kinetic energy
is found

for the more strongly stratified simulation.

3. Phase angle in sheared stably stratified turbulence

In this section, the phase angle in sheared stably stratified turbulence is discussed. The
Richardson number Ri is varied from Ri = O, corresponding to unstratified shear flow,

to Ri = 1, corresponding to strongly stratified shear flow.

Figure 3 shows the spectrum of the phase angle ¢_p between the vertical velocity

u2 and the density p at non-dimensional time St = 5. In the unstratified simulation

with Ri = 0 (o symbols), phase angles ¢_2p _ 0 are found for small wave numbers kl

and phase angles ¢_2p _ 4-180° are found for large values of kl. The transition from

¢__,p m 0 to ¢_2p _ 4-180° occurs at a wave number kl ,_ 35. At this wave number, the
cospectrum Co_,2p crosses zero and changes sign. As the Richardson number is increased,
the transition wave number decreases to about hi _ 20 for Ri = 0.1, kl _ 17 for Ri = 0.2,

kl _ 10 for P_i : 0.5, and kl _ 5 for __i : 1. Phase angles Cu=p _ 4-90°, indicating

possible internal wave motion, are observed only in the strongly stratified simulations
with Ri = 0.5 and Ri = 1 and only for a few scattered wavenumbers, not over a region

of wavespace. Again, these isolated instances of 90 ° phase angles are associated with

zero-crossings of the associated cospectrum, rather than a region in wavespace exhibiting
wavelike behavior.

Figure 4 shows the probability distribution of the phase angle ¢_,2p over an instanta-
neous flow field. The phase angle distribution of the unstratified simulation with Ri = 0

has a slight maximum at ¢_p = 0, indicating a very modest predominance of down-
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FIGURE 4. Distribution of the phase angle ¢_2p in sheared stratified turbulence at St = 5 with

Richardson numbers 0 (o), 0.1 (o), 0.2 (o), 0.5 (4), and 1.0 (_7).

gradient mixing. As the Richardson number is increased, the maximum of the phase

angle distribution is found at ¢,,_p = +180 °, corresponding to counter-gradient mixing.
The largest contribution to ¢_; = +180 ° is found in the/{i = 0.5 case, which also shows

the strongest counter-gradient mixing coefficient. For all cases, a continuous phase angle
distribution is observed. There are no local peaks apparent around ¢_2p = 4-90° that

would suggest regions of wavelike behavior distinct from the background turbulence.
In order to obtain a more complete picture of phase angle distributions in turbulent

stratified flow, figure 5 shows the distribution of the phase angle ¢_2 between down-
stream ul and vertical u2 velocity components, again at St = 5. The distribution is

relatively unaffected by the Richardson number variation. It shows strong peaks around

¢_1_2 = 0 and around ¢_ = +180 °. For modes with ks = 0, the continuity equation
in wave space requires that the Fourier coefficients fil and fi2 are in the same direction,

corresponding to ¢_2 = 0, or in opposite directions, corresponding to ¢_,1_2 = +180°'

The peaks therefore are a result of two-dimensional modes.

4. Phase angle in unsheared stably stratified turbulence

In this section, the phase angle in unsheared decaying stably stratified turbulence is

discussed. A weakly stratified case with initial Froude number Fr = 64 is compared to a

more strongly stratified case with Fr = 6.4.
The spectrum of the phase angle ¢u2; after about 10 eddy-turnover times is shown in

figure 6. The weakly stratified case with Fr = 64 has Cu2p _ 0 for all kl, corresponding
to down-gradient flux. The case with Fr = 6.4, however, shows ¢_2p _ 4-180° for wave

numbers larger than about kl = 30, corresponding to counter-gradient mixing. As with
the sheared cases, there is no band in wavespace with wavelike behavior.

The phase angle distribution over the instantaneous field at the same time is shown in
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FIGURE 5. Distribution of the phase angle ¢_2 in sheared stratified turbulence at St = 5
with Richardson numbers 0 (o), 0.1 (cJ), 0.2 (o), 0.5 (/x), and 1.0 (V).

figure 7. The distribution of the weakly stratified case shows a clear maximum around

¢_p, = 0. However, the phase angles are widely distributed, which perhaps would not
have been anticipated given the distribution in figure 6, which shows averaged phase

angles at a given wave number. The distribution of the Fr = 6.4 case shows a maximum

around ¢_2p = +180°, corresponding to counter-gradient mixing. The distribution of
phase angles between downstream velocity ul and vertical velocity u2 is very similar to
that of the sheared case, with strong peaks at 0 ° and 4-180 ° and a weak dependence on

the strength of the stratification.

5. Normal mode analysis

A normal mode analysis of the linearized inviscid equations of motion for the un-

sheared flow is performed. The direct numerical simulation data is then projected onto

the eigensolution in order to extract a possible linear wave motion present in the data.

The analysis is based on the following linearized inviscid equations of motion:

Op
-- SOU2

Ot

Oui _ 10p g p_i2
Ot po c_xi po

The pressure is eliminated from the equations using the continuity equation. The equa-
tions are transformed into Fourier space and take the following form:

0p _ g Spg; = N2g;
c_t Po
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FIOURE 6. Spectrum of the phase angle ¢-2P in unsheared stratified turbulence after about 10

eddy-turnover times with initial F'roude numbers 64 (o) and 6.4 (o).

Oe, ( _ k2 )o-7= - .

Normal modes of the form

_a

gl expi(kjxj + cot)
= fi2

('3

are introduced and lead to the following system of equations:

___ k___ #
po k_ i_ 0 0 Ul

- - 1 0 iw 0 u2

3- _ 0 0 iw ¢_a
-- Po k a

=0

From this system of equations, the following dispersion relation is obtained:

co2 = 0 _ = :t:v_

Here, D takes the following value:
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FIGURE 7. Distribution of the phase angle ¢_2p in unsheaxed stratified turbulence after about
10 eddy-turnover times with initial Froude numbers 64 (o) and 6.4 (u).

The following eigenvectors are obtained:

)

_:ikl k2 V_

el,3 = -4-i(k_ + k2)v/-D e2 =

_=ik2 k3 v/-D
/0/,/0)00 e4 = 0

0 1

The solution from direct numerical simulations can now be expressed in terms of the

eigenvectors:

aDN S .= alel -I- a2e2 -t- a3e3 -t- a4e4

Here, the components a2 and a4 describe horizontal vortical motion. The components

al and a3 define an upper bound for the wave motion present in the field. Note that

any DNS data, except that for kl and k3 both zero, can be represented by a choice of
complex al, a2, a3, and a4. The coefficients are found by multiplication with the complex

conjugate of the eigenvectors of the adjoint problem.
Note that the solution to the linearized governing equations is also used in Rapid

Distortion Theory. The analytical solution to the equations presented at the beginning
of this section was developed by Hanazaki and Hunt (1996). The solutions of these lin-

earized equations show an impressive degree of similarity to solutions of the full nonlinear

problem and capture many of the distinctive behaviors of stably stratified turbulence.

Remarkably, Hanazaki and Hunt (2002) have extended this analysis to include the case
of uniformly sheared stratified turbulence as well. Presumably this solution coutd be

used to provide guidance on how to decompose the sheared flow fields, but the difficul-
ties encountered above would still be present (namely, all the turbulent motion could

be represented by the eigenvectors of the linearized system and even after eliminating
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horizontal motions containing the vertical vorticity the remaining "wave" motion could

still contain a turbulent component).

6. Summary

In this study, the phase angle ¢u_p between vertical velocity u2 and density p was com-

puted from direct numerical simulations of sheared and unsheared homogeneous stratified

turbulence. A broad distribution of the phase angle was found that is consistent with

observed down-gradient mixing for weakly stratified flow and counter-gradient mixing for

strongly stratified flow. However, the broad distribution hides any internal wave signature

that may be present in the flow.

A decomposition based on linear analysis has been proposed for unsheared decaying
stratified turbulence. The flow fields are decomposed into horizontal vortical motions and

vertical wave motions. However, there may still be some turbulent motion contained in

the wave field. In agreement with Stewart (1969) we find that "there is probably no really
clear-cut distinction between turbulence and waves".
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